LOW PASS TOPOLOGY
----C1---------------
I I
I I
V(IN)----R--------R--------R--------A=1-------- V(OUT)
I I
I I
C3 C2
I I
I I
- -
HERE THE TRANSFER FUNCTION G(S)=V(OUT)/V(IN) IS
G(S) = 1 / (1 + (S)*(3*C2+C3)*R + (S^2)*(C1*C2+C2*C3)*R^2 +
(S^3)*(C1*C2*C3)*R^3)
OR G(S) = 1 / (1 + (S)*A1 + (S^2)*A2 + (S^3)*A3)
or G(JW) = 1 / (1 + (JW)*A1 - (W^2)*A2 - (JW)*(W^2)*A3)
OR |G(JW)|^2 = 1 / [(1 - (W^2)*A2 + J*(W*A1 - (W^3)*A3)) *
(1 -(W^2)*A2 - J*(W*A1 - (W^3)*A3))]
OR |G(JW)|^2 = 1 / [[1 - (W^2)*A2]^2 + [(W*A1 - (W^3)*A3]^2]
SO FOR NORMALIZED BUTTERWORTH FILTERS (WC = 1)
WHERE G MUST BE |G(JW)|^2 = 1 / (1 + W^2*3)
MAKES A3 = 1 2*A2 = A1^2 A2^2 = 2*A1*A3
OR A1 = 2 A2 = 2 A3 = 1 FOR BW LP FILTERS
EXAMPLE: 3-P BW LPF WITH FC = 3400 HZ (WC = 21362).
LET R = 10K. THEN C1 = 16.6 NF, C2 = 0.95 NF, C3 = 6.5 NF.
NOTE THAT IT IS ABOUT 40 DB DOWN AT 16 KHZ.
J. E. MATZ - 10 MAR 97